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Bio

- Currently based in Silicon Valley, CA working as a 

Research Scientist at TRI

- PhD in ME from Georgia Tech

- Training AI and deep models since 6+ years

- Fulbright Scholar

- Various industry experiences

- Publications/Patents/Open-Source Contributions
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Agenda

- Recent 3D Representations – 10 mins

- What are foundation models? – 5 mins

- How to build towards 3D foundation models– 25 mins

- Wrap up / Q&A – 10-15 mins
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Part 1: Recent 3D Representations
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What are Neural Fields or NeRFs?
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Approach to transform 2D pictures into 3D Scenes

Tancick et al, BlockNeRF, CVPR 2022
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Applications
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Scene Understanding for Outdoor Scenes

Irshad et al, NeO 360, ICCV 2023



NeRFStudio VFX

Visual Effects
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10J. Kerr et al. LeRF, ICCV 2023

Language guided 3D Querying
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Robotics
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Let’s go back to 2010 on how we were 
understanding 3D back then
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Truncated Signed Distance Function (TSDF)



Initialized Grid Target Geometry

Slide modified from Mathew Tancik’s talk

Truncated Signed Distance Function (TSDF)

14



Target GeometryInitialized Grid

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 15



TSDF Update

Depth

Camera

Depth Image

● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the 
camera coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the 
value stored in the voxel.

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 16



TSDF Update

(𝑥, 𝑦, 𝑧)

(𝑢, 𝑣)
● For each 3D voxel location in the camera 

coordinate (𝑥, 𝑦, 𝑧): 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel.

Depth

Camera

Depth Image

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 17



● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the 
camera coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel.TSDF Update

(𝑢, 𝑣)

Depth

Camera

Depth Image

(𝑥, 𝑦, 𝑧)

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 18



● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the 
camera coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel.TSDF Update

(𝑢, 𝑣)

Depth

Camera

Depth Image

(𝑥, 𝑦, 𝑧)

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 19



● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the 
camera coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel.TSDF Update

(𝑢, 𝑣)

Depth

Camera

Depth Image

(𝑥, 𝑦, 𝑧)

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 20



● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the camera 
coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel if |𝑑𝑝𝑟𝑜𝑗| is smaller.

TSDF Update

(𝑢, 𝑣)

Depth

Camera

Depth Image

(𝑥, 𝑦, 𝑧)

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 21



Multi-view Observations

● For each 3D voxel location (𝑥, 𝑦, 𝑧) in the 
camera coordinate: 

○ Project (𝑥, 𝑦, 𝑧) to 2D pixel (𝑢, 𝑣).

○ Read the depth value 𝑑(𝑢, 𝑣) at pixel (𝑢, 𝑣).

○ Compute 𝑑𝑝𝑟𝑜𝑗 = 𝑑(𝑢, 𝑣) − 𝑧.

○ Normalize, truncate, and update the value 
stored in the voxel.

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 22



Target GeometryReconstruction

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 23



Reconstruction Target Geometry

Truncated Signed Distance Function (TSDF)

Slide modified from Mathew Tancik’s talk 24



Slide modified from Mathew Tancik’s talk

Truncated Signed Distance Function (TSDF)
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VGN, Breyer et al.

TSDF for Robotics Grasping
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VGN, Breyer et al.

TSDF for Robotics Grasping
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VGN, Breyer et al.

TSDF for Robotics Grasping
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Voxel

Easy to optimize
Large memory footprint

Search for a better 3D Representation

29Slide modified from Mathew Tancik’s talk



Voxel

Easy to optimize
Large memory footprint

?

Easy to optimize
Small memory footprint

Is there a better Solution?

30Slide modified from Mathew Tancik’s talk



Easy to optimize
Small memory footprint

Multi Layer Perceptron

Slide modified from Mathew Tancik’s talk

Voxel

Easy to optimize
Large memory footprint

Implicit Representation

31
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Neural Radiance Fields (NeRFs)
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Neural Radiance Fields (NeRFs)
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Neural Radiance Fields (NeRFs)
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Distilled Feature Fields, Shen et al.

NeRF for Grasping
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1) Because voxel grids are memory inefficient, we can use coordinate-
based MLPs to store data efficiently

2) NeRF’s volumetric rendering enables photorealistic rendering

3) Downstream applications include robotics, semantic grounding etc.

Summary so far

38
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Part 2: Foundation Models



Foundation Model

Distilled Model

8x 222B parameters

Large Models trained on massive datasets

Finetuned Model Better capability

8B parameters

Visual Instruction 
tuning

Phi-2 Microsoft, Zero123 Liu et al, Llava Lu et al.
40
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Yining et al.3D LLM, Neurips 2023

3D LLM
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Huang et al. LEO, ICML 2024

Embodied Foundation Model



What about 3D + Robotics?

43
SUGAR CVPR 2024, RoboPoint arXiv 2024
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2D Dataset

LAION-5B

(5B)

3D Datasets

Objaverse-XL

(10M)

Objaverse

(800K)

Object-centric

Why Neural Fields Matter for 3D Foundation Models



1) Foundation models are essential due to various reasons i.e. saving resources

2) 3D vision is starting to see some decent foundation models 

3) Foundation models can be pulled into smaller more meaningful models 
through finetuning or model distillation

Summary so far

45
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Part 3: How to build towards 
3D Foundation Models



European Conference in Computer Vision 2022

ShAPO: Implicit Representations for Shape 
Appearance and Pose Optimization

Zubair Irshad Rares Ambrus Zsolt Kira Adrien GaidonSergey Zakharov Thomas Kollar

47



3D Shape Appearance6D pose and size

Input

holistic category-level 
3D object understanding

Category-level Manipulation [NDF’21] Asset Creation [HHBD ICCV’19]Robotics Grasping [GIGA RSS’21]48

Motivation



Disjoint Shape Reconstruction
and Pose and Size Estimation

b

Shape
NN

Pose
NN

Backbone

Canonical 
Shape

6D Pose 
and Size

Joint Detection, Reconstruction 
and Pose Estimation

c

CenterSnap 
Model

𝒇

Heatmap
Head

Detection as 
center points

Object-centric 3D 
parameter maps

Shape
Head

Pose
Head

+

…

Decoder
Canonical 

Shape

6D Pose 
and Size

Feature
Backbone

𝑏𝑏𝑜𝑥1

𝑏𝑏𝑜𝑥2

𝑏𝑏𝑜𝑥𝑛
2D

Detector

Detectiona

𝑚𝑎𝑠𝑘1

𝑚𝑎𝑠𝑘2

𝑚𝑎𝑠𝑘𝑛

49 NOCS, CVPR 2019, Object Deformnet, ECCV 2020

Proposed

Key highlights (Prior Methods):
– Anchor-Based
– Disjoint shape reconstruction and object-

centric scene context
– Slow reconstruction
– Category-specific reconstruction and 6D pose 

and size estimation

Key highlights (Our proposed):
+ Anchor-free 3D
+ Joint shape reconstruction and object-

centric scene context
+ Fast (Real-time)  reconstruction
+ Category agnostic reconstruction and 6D 

pose and size estimation

0.05FPS 40FPS

Contribution 1

Contribution 2

Contribution 3

Object Reconstruction and Pose Estimation (Current Paradigm)



Optimize

50 [Ref] M.Z.Irshad, et al, ” ShAPO : Implicit Representations for Multi Object Shape Appearance and Pose Optimization, ECCV2022

Architecture



Optimize

51

Key highlights:
● Represents geometry as continuous SDF

•

● Represents appearance as Texture Field
•

● Architecture: Single MLP each
● Trained using supervised learning objective
● Dataset: Shapenet synthetic dataset

● 6 Categories,  1k+ textured models

[Ref] M.Z.Irshad, et al, ” ShAPO : Implicit Representations for Multi Object Shape Appearance and Pose Optimization, ECCV2022

Shape and Appearance Prior Database



Optimize
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Differentiable iso-surface projection:
● Trivial Solution: Threshold the 

points based on SDF value, Non-
Differentiable

● Alternate solution: Utilize 
gradients and normal values 
(Ours)

Animation: SDF Label CVPR, 2020

Efficiently optimizing Shape and Texture



Optimize
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Octree-based point sampling:
● Brute Force Solution: Extremely 

inefficient
● Sampling 216000 ~= 1600 

surface points (0.7%)
● Solution: Coarse-to-fine sampling
● LoD3 to LoD7

Efficiently optimizing Shape and Texture



Optimize
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Octree-based point sampling:
● Brute Force Solution: Extremely 

inefficient
● 603 points = 216000 ~= 1600 

surface points (0.7%)
● Solution: Coarse-to-fine sampling
● LoD3 to LoD7

Efficiently optimizing Shape and Texture
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Takeaway: Establish a new SOTA

for 6D Pose and Size Estimation, 

while adding textures to the 

representation!

Metrics: Detection (Intersection over 

Union, IOU@2525, IOU@50)

Pose Estimation (Rotation, 

translation accuracy)

Quantitative Results
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Ablation Analysis

Takeaways: 

1. LoD7 has the higher accuracy 

while LoD6 gives the best 

speed/accuracy trade-off

2. PSNR improves after 

optimization and finetuning 

confirming iterative optimization 

helps fine-tuning



Testing Results on Xtion Pro Live  Camera on HSR Robot

RGB Depth
Appearance 

Reconstruction

6D pose and size 3D Shape
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Qualitative Results (In-the-wild on HSR Robot)



Input 3D Shape + 6D Pose

N
O

C
S

R
E

A
L

2
7

5
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Qualitative Results



1) Categorical 3D models can model a large number of categories of objects

2) Combining them with detection makes them efficient retrievers

3) Scaling to thousands of categories is still a slight challenge

Summary so far

59



Masked AutoEncoders for Self-Supervised 3D 
Representation Learning for Neural Radiance Fields

Zubair Irshad Rares AmbrusZsolt KiraAdrien GaidonSergey 
Zakharov

Vitor Guizilini

European Conference on Computer Vision, ECCV 2024
also appeared at CVPR Neural Rendering Intelligence Workshop, 2024

NeRF-MAE

60
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Point-
MAE

Data: 3D PointClouds
Representation: 3D

Data: 2D Images
Representation: 2DMAE

Voxel-
MAE

Data: Lidar PointClouds
Representation: 3D

MAE, CVPR2022 | Point-MAE, ECCV2022 | Voxel-MAE, WACV2023

What is representation Learning?



Language-Embedded Radiance Fields 
(LeRF, Kerr et al)

Inferring Accurate Geometry
(NeRFMeshing, Rakotosaona et al)

Open-world Manipulation
(F3RM, Shen et al)

Efficient Data Storage
(PerFception, Jeong et al)

Neural Fields beyond showcasing high rendering quality

62



Existing 3D MAE architectures vs NeRF-MAE

Model Surface
Level Information

Irregular data 
Structures

Uneven 
information density 63



High Information 
Density

Regular 
unbiased Sampling

Spatial data
redundancy

Existing 3D MAE architectures vs NeRF-MAE

64



Architecture

65



Data preprocessing flow for large-scale 3D pretraining

66
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Key Idea: Pretrain a Single Transformer model using masked 
reconstruction objective

Section 3. NeRF-MAE 

Architecture

Input RGB/Density 

Grid (G)

Patch 

Partition

Transformer

Stage 1

Transformer

Stage 2

Transformer

Stage 3

Transformer

Stage 4

+ Positional

Encoding
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Transformer

Stage 1
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Random

Masking

𝐻×𝑊×𝐷×𝐶

Masked RGB/

Density Grid (M)

Linear

Norm

W-

MSA

Linear

Norm

MLP

Linear

Norm

W-

MSA

Linear

Norm

MLP

+ +

+ +

c

3 × 3

Downsampling

Upsampling

3x3 Convolution

Transpose Conv

Residual Block

Concatenation

Positional encoding

c

c

c

Out 

Block

Reconstructed RGB/

Density Grid (R)

Consecutive Swin

Transformer Blocks
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Key Takeaway: Large Model +  Large-Scale data = Good Representations



Qualitative Masked Reconstruction Results
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NeRF Quality on Pretraining
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Quantitative Results
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Results Analysis
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Qualitative Results
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Good:

1) Early signs of life of 3D foundation models only utilizing posed 2D data

2) Scaling helps here too

Bad:

1) No neural rendering + masking communication which could be important 
for geometric downstream tasks

2) Single modality currently. Language/Audio as input?

Summary so far

74
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Current/Future Work

RoboPoint, arXiv 2024 | OpenEQA, CVPR2024 | ZeroNVS, CVPR 2024 | Feature3DGS, CVPR 2024

3D Vision and Robotics Foundation Models

- Trained on massive datasets on large compute

- Depth/poses/calibration is the key factors

- Most likely use an LLM due to the world knowledge it has obtained

Benchmarking Robotics Foundation Models

- Need a common evaluation to validate the performance

- Robo-QA or spatial understanding could be early signs of success

Data Augmentation through NVS and Diffusion Models

- We have other foundation models like ZeroNVS or Diffusion Models, 

so why not utilize them off-the-shelf for data augmentation?

Distilling 2D Foundation Models to 3D

- Distill powerful 2D models trained on billions of internet scale datapoints

- Some examples: semantic distillation into NeRFs



Zubair Irshad 
Research Scientist

Toyota Research Institute
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09/8/2024

zubairirshad.com

Thank you!
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