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Part 1: Recent 3D Representations



What are Neural Fields or NeRFs?



Approach to transform 2D pictures into 3D Scenes

Tancick et al, BlockNeRF, CVPR 2022



Applications



Scene Understanding for Outdoor Scenes

Irshad et al, NeO 360, ICCV 2023



Visual Effects

é?__,?f-;ﬁnerfstud o)

NeRFStudio VFX



Language guided 3D Querying

J.Kerr et al. LeRF, ICCV 2023
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Let’s go back to 2010 on how we were
understanding 3D back then



Truncated Signed Distance Function (TSDF)
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Truncated Signed Distance Function (TSDF)

Initialized Grid Target Geometry

Slide modified from Mathew Tancik’s talk 14



Truncated Signed Distance Function (TSDF)
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Slide modified from Mathew Tancik’s talk 15



Truncated Signed Distance Function (TSDF)
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Slide modified from Mathew Tancik’s talk 16



Truncated Signed Distance Function (TSDF)
SN

Depth Image

® For each 3D voxel location in the camera

coordinate (x,y, z):

(x,¥,2)

N—

TSDF Update

Slide modified from Mathew Tancik’s talk
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Truncated Signed Distance Function (TSDF)
SN

(x,

Depth Image

® For each 3D voxel location (x,y, z) in the

camera coordinate:

o Project (x,y,2z) to 2D pixel (u, v).

Y, Z)

N—

TSDF Update

Slide modified from Mathew Tancik’s talk
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Truncated Signed Distance Function (TSDF)
SN

Depth Image

® For each 3D voxel location (x,y, z) in the
camera coordinate:

O

Project (x,y,z) to 2D pixel (u,v).

O

(x,y,2) Read the depth value d(u, v) at pixel (u, v).

N—

TSDF Update

Slide modified from Mathew Tancik’s talk 19



Truncated Signed Distance Function (TSDF)
SN

Depth Image

® For each 3D voxel location (x,y, z) in the
camera coordinate:

o Project (x,y,2z) to 2D pixel (u, v).

(x,y,2) o Read the depth value d(u, v) at pixel (u, v).

N—

o Compute dyro; = d(u,v) — z.

(@)

TSDF Update

Slide modified from Mathew Tancik’s talk 20



Truncated Signed Distance Function (TSDF)
SN

Depth Image

® For each 3D voxel location (x,y, z) in the camera
coordinate:

(@)

Project (x,y,z) to 2D pixel (u, v).

(@)

(x ¥, Z) Read the depth value d(u, v) at pixel (u, v).

N—

(@)

Compute dpej = d(u,v) — z.

O

Normalize, truncate, and update the value
stored in the voxel if |dpy;| is smaller.

TSDF Update

Slide modified from Mathew Tancik’s talk 21



Truncated Signed Distance Function (TSDF)
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Slide modified from Mathew Tancik’s talk
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Truncated Signed Distance Function (TSDF)

Reconstruction Target Geometry

Slide modified from Mathew Tancik’s talk 23



Truncated Signed Distance Function (TSDF)

A

Reconstruction Target Geometry

Slide modified from Mathew Tancik’s talk 24



Truncated Signed Distance Function (TSDF)

SR

For each grasp, we integrate a TSDF of the scene along a fixed trajectory,

Slide modified from Mathew Tancik’s talk 25



TSDF for Robotics Grasping

SR

For each grasp, we integrate a TSDF of the scene along a fixed trajectory,

VGN, Breyer et al. 26



TSDF for Robotics Grasping
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VGN, Breyer et al. 27



TSDF for Robotics Grasping

1x40x40x40

I

VGN, Breyer et al.
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Search for a better 3D Representation

Easy to optimize
Large memory footprint

Slide modified from Mathew Tancik’s talk
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Is there a better Solution?

Easy to optimize Easy to optimize
Large memory footprint Small memory footprint

Slide modified from Mathew Tancik’s talk

30



Implicit Representation

00

Multi Layer Perceptron

Easy to optimize Easy to optimize
Large memory footprint Small memory footprint

Slide modified from Mathew Tancik’s talk
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PN
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Video credit: NeRF [Mildenhall et al. 2020]



PN
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Video credit: NeRF [Mildenhall et al. 2020]



Neural Radiance Fields (NeRFs)

5D Input
Position + Direction
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Neural Radiance Fields (NeRFs)

Output
Color + Density

I]I][I* RGB)—_-
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Neural Radiance Fields (NeRFs)

Volume Rendering
Rendering Loss
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(c) (d)
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1. Scan Scene

NeRF for Grasping

2. Train NeRF
and Distill Features

Distilled Feature Fields, Shen et al.
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Summary so far

1) Because voxel grids are memory inefficient, we can use coordinate-
based MLPs to store data efficiently

2) NeRF's volumetric rendering enables photorealistic rendering

3) Downstream applications include robotics, semantic grounding etc.
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Part 2: Foundation Models
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Large Models trained on massive datasets

Foundation Model
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3D LLM

Direct Reconstruct
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Yining et al.3D LLM, Neurips 2023
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Embodied Foundation Model
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Huang et al. LEO, ICML 2024



What about 3D + Robotics?

Policy Learning VLMs and VLA Representations Simulation/Benchmarks Pretraining
— Pre-training Data Generation
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Why Neural Fields Matter for 3D Foundation Models

3D Datasets

Object-centric

/‘

. O

Objaverse Objaverse-XL
(800K) (10M)

2D Dataset

LAION-5B
(5B)
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Summary so far

1) Foundation models are essential due to various reasons i.e. saving resources
2) 3D vision is starting to see some decent foundation models

3) Foundation models can be pulled into smaller more meaningful models
through finetuning or model distillation
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Part 3: How to build towards
3D Foundation Models
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ShAPO: Implicit Representations for Shape
Appearance and Pose Optimization

& 0 2 @ 0O

Zubair Irshad Sergey Zakharov Rares Ambrus Thomas Kollar Zsolt Kira Adrien Gaidon

European Conference in Computer Vision 2022
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Motivation

{ -
6D pose and size Appearance
{
holistic category-level

w0

48 Robotics Grasping [GIGA RSS'21]

3D object understanding
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Category-level Manipulation [NDF'21] Asset Creation [HHBD ICCV'19]



Object Reconstruction and Pose Estimation (Current Paradigm)
Key highlights (Our proposed):

+ {Anchor-free 3D i Contribution 1

..............................
———————————————————————————————————————————————————————————————————

Key highlights (Prior Methods):
- Anchor-Based
- Disjoint shape reconstruction and object-
centric scene context
- Slow reconstruction
- Category-specific reconstruction and 6D pose
and size estimation

__________________________________________________________________

' Category agnostic reconstruction and 6D
‘pose and size estimation  Contribution 3 |
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+

~
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Architecture
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Shape and Appearance Prior Database

Key highlights:
® Represents geometry as continuous SDF
. G(m,zsdf) =S zgdf € R64, seR

® Represents appearance as lexture Field
- 4. -3 L TR3
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51 [ReffM.Z.Irshad, et al, ” ShAPO : Implicit Representations for Multi Object Shape Appearance and Pose Optimization, ECCV2022
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Differentiable iso-surface projection:
Trivial Solution: Threshold the
points based on SDF value, Non-

Efficiently optimizing Shape and Texture

Differentiable

Alternate solution: Utilize
gradients and normal values

(Ours)
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Animation: SDF Label CVPR, 2020
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Efficiently optimizing Shape and Texture

Octree-based point sampling:

Brute Force Solution: Extremely
inefficient

Sampling 216000 ~= 1600
surface points (0.7%)

Solution: Coarse-to-fine sampling
LoD3 to LoD7
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Efficiently optimizing Shape and Texture

Octree-based point sampling:
® Brute Force Solution: Extremely
inefficient
® 603 points = 216000 ~= 1600
surface points (0.7%)
® Solution: Coarse-to-fine sampling
e |[oD3tolLoD7/

Target



Quantitative Results

Table 2: Quantitative comparison of 6D pose estimation and 3D object de-
tection on NOCS [41]: Comparison with strong baselines. Best results are highlighted
in bold. * denotes the method does not report IOU metrics since size and scale is not
evaluated. We report metrics using nocs-level class predictions for a fair comparison
with all baselines.

Takeaway: Establish a new SOTA pppp—— p—
for 6D Pose and Slze EStlmat|0n, Method 10U25 IOU50 5°5 cm 5°10 cm 10°5 cm 10°10 em IOU25 IOUS50 5°5 cm 5°10 em 10°5 em 10°10 em
Wh||e addlng teXtU res to the 1 NOCS [41] 91.1 839 409 38.6  6G4.6 65.1 84.8  78.0 10.0 9.8 25.2 25.8
. 2 Synthesis™ [3] - - - - - - - - 0.9 1.4 2.4 5.5
representaﬂon! 3 Metric Scale [23]  93.8  90.7 20.2 282  55.4 58.9 81.6 681 5.3 5.5 24.7 26.5
4 ShapePrior [37] 81.6 724 59.0 59.6  81.0 81.3 81.2 773 214 214 541 54.1
5 CASS [2] - - - - - - 84.2 777 235 238 580 58.3

6 CenterSnap [15] 93.2 92.3 63.0 69.5 79.5 87.9 83.5 80.2 27.2 29.2 5H8.8 64.4
7 CenterSnap-R [15] 93.2 92.5 66.2 TL.T 81.3 87.9 83.5 80.2 29.1 31.6 64.3 70.9

IR ShAPO (Ours) 94.5 93.5 66.6 75.9 81.9 89.2 85.3 79.0 48.8 57.0 66.8 78.0 I

MetriCS: DeteCtion (InterseCtion over Table 3: Quantitative comparison of 3D shape reconstruction on NOCS [41]:
Un|on1 |OU@2525, |OU@50) Evaluated with CD metric (1072)‘ Lower is better.

H H H CAMERAZ25 REAL2T75
Pose Estimation (Rotation,
. Method Bottle Bowl Camera Can Laptop Mug Mean Bottle Bowl Camera Can Laptop Mug Mean
tranSIat|0n aCCuraCy) 1 Reconstruction [37] 0.18 0.16 0.40  0.097 0.20 0.14 0.20 0.34 0.12 0.89 0.5 029 010 0.32
2 ShapePrior [37] 0.34  0.22 0.90 0.22 033 0.21 037 050 0.12 099 024 071 0.097 0.44
3 CenterSnap 011 0.10 0.29  0.13 007 0.12 0.14 013 0.10 043  0.09 007 0.06 0.15

ISShAPO (Ours) 0.14 0.08 0.2 0.14  0.07 0.11 0.16 0.1 0.08 0.4 0.07 0.08 0.06 0.13 I




Takeaways:

1.

LoD7 has the higher accuracy
while LoD6 gives the best
speed/accuracy trade-off
PSNR improves after
optimization and finetuning
confirming iterative optimization
helps fine-tuning

Ablation Analysis

Table 4: Generalizable Implicit Representation Ablation: We evaluate the effi-
ciency (point sampling/time(s)/memory(MB)) and generalization (shape(CD) and tex-
ture(PSNR) reconstruction) capabilities of our implicit object representation as well
as its sampling efficiency for different levels of detail (LoDs) and compare it to the
ordinary grid sampling. All ablations were executed on NVIDIA RTX A6000 GPU.

I Point Sampling |

Efficiency (per object)

Reconstruction

Grid type Resoluti
e type | esotution | Input Qutput | Time (s) Memory (MB) | Shape (CD)  Texture (PSNR)
40 64000 412 10.96 3994 0.30 10.08
Ordinary 50 125000 835 18.78 5570 0.19 12.83
60 216000 1400 30.51 7850 0.33 19.52
LoD5 1521 704 I 5.53 2376 I 0.19 9.27
OctGrid LoDé 5192 3228 6.88 2880 L_ous 1363 |
LoD7 20246 13023 12.29 5848 0.24 16.14

Table 1: Texture quality ablation. We compare texture quality using the PSNR
metric between three modalities: network prediction, optimization, and fine-tuning of

the ty network.

| Inference

Optimization

Fine-tuning

PSNR

11.41

20.64
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Qualitative Results (In-the-wild on HSR Robot)

Appearance
Reconstruction

Yy 4

6D pose and size 3D Shape

Testing Results on Xtion Pro Live Camera on HSR Robot
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NOCS REAL275

Qualitative Results
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Summary so far

1) Categorical 3D models can model a large number of categories of objects
2) Combining them with detection makes them efficient retrievers

3) Scaling to thousands of categories is still a slight challenge
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Y ) TOYOTA = oy Georgia
\ RESEARCH INSTITUTE :CC\’ & TEChg

NeRF-MAE

Masked AutoEncoders for Self-Supervised 3D
Representation Learning for Neural Radiance Fields

European Conference on Computer Vision, ECCV 2024
also appeared at CVPR Neural Rendering Intelligence Workshop, 2024

-4y . " 4
‘\.»“‘\ \ 43

Zubair Irshad Sergey Vitor Guizilini Adrien Gaidon Zsolt Kira Rares Ambrus
Zakharov
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What is representation Learning?

Voatna, o . K W
*‘Q’;%
. .le e g
Point- : T2
X :

R Nt (g7 1o

MAE < N
» Y as
i A \ ""f_.

Voxel-
MAE

Data: 2D Images

. Representation: 2D
Data: 3D PointClouds

> Representation: 3D

_ Data: Lidar PointClouds

Representation: 3D

MAE, CVPR2022 | Point-MAE, ECCV2022 | Voxel-MAE, WACV2023
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Neural Fields beyond showcasing high rendering quality

Language-Embedded Radiance Fields Inferring Accurate Geometry
(LeRF, Kerr et al)

(NeRFMeshing, Rakotosaona et al)

. = —
Image Dataset PeRFception Dataset 2D Classification
Object-centric . Aa3dt Rendenug t\ Trainin g
~n iy
: pA-A L 4
| . = > ';‘» o Q“ Optimized Plenoxels RGB Images 2D Network
o AT

3D Classification

WsT0P) Plenoxels E
;- ‘; SH Coefficients @ 7 Training
. O Wal Spherical - >
Scene-centric Hamonis

Coefficients Voxel with SH Coefficients

3D Network
— Semantic Segmentation )
1. Scan Scene - éé Density v \%‘
V'(el Lbeled\'(l oxel Labeled Voxel
Open-world Manipulation

Efficient Data Storage
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Existing 3D MAE architectures vs NeRF-MAE

Masked Reconstruction
Objective

BN  Decoder

a) MAE

Reconstructed

Masked

X Model Surface

Level Information

Image Patch
Reconstruction

b) Image

X Irregular data
Structures

§parse Surface-level
Point Reconstruction

Mask point
patches .

¢) Point-based i

v

X Uneven
information density 63

Dense Opacity-aware
Volume Reconstruction

Volumetric
patch-level
attention

\
d) NeRF-MAE (Ours)



Existing 3D MAE architectures vs NeRF-MAE

Masked Reconstruction
Objective

BN  Decoder

a) MAE

/~ High Information
Density

Reconstructed

Masked

Image Patch
Reconstruction

b) Image

v~ Regular
unbiased Sampling

Sparse Surface-level
Point Reconstruction

Mask point
patches .

¢) Point-based .

Dense Opacity-aware
Volume Reconstruction

Volumetrid
patch-level
attention

A
d) NeRF-MAE (Ours)

/" Spatial data
redundancy
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Architecture

a) Masked Pretraining Voxel-Grid Neural Radiance Fields b) Downstream 3D Tasks

Opacity-aware
3D Reconstruction Loss

NeRF-MAE

3 o Transformer Encoder
y Positional

Encoding

NeRF Masked S EE EEE Reconstructed Radiance and A .
Radiance and Density Grid =~ P<hes % - Density Voxel Grid iii. Semantic Voxel Labelling
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Data preprocessing flow for large-scale 3D pretraining

Transformer Voxel
Encoder Decoder

d) NeRF-MAE Pretraining ¢) Extracted Radiance and Density Grid
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a) Multi-view Dataset Setup

b) NeRF-MAE Data Mix & Statistics

Hypersim

WM Pretrain 3668 I Finetune & Eval
Total 1804
Fro1n?§g 1330 1330 Total
HM3D 440 HM3D
90 Fro nt3D
ScanNet HyperSIm l ScanNet I

Number of Scenes Number of Images (x1000)



Key Idea: Pretrain a Single Transformer model using masked
reconstruction objective

Input RGB/Density
Grid (G)

. Positional encoding

©

R

Concatenation
Residual Block
‘D Transpose Conv

D 3x3 Convolution

—> Upsampling

—> Downsampling

Random .
Masking | v Section 3. NeRF-MAE
47— Architecture
Patch
o | €«——— HXWXDXC
Partition
H_ H_H >
—X=X=XF ¢
4 4 4I \¢
Positiona
Encoding Reconstructed RGB/
Masked RGB/ Density Grid (R)
Density Grid (M
Transformer H W Do y (M) (h (h é )
—- — — l 141 <—
Stage 1 4 4 4 ¢
MLP MLP
Patch Merging
Transformer 1 1
Stage 2 LANSLAVERY: 2F Linear Linear
g ) s s Norm Norm
Patch Merging ill é(_ il'l—k—lf
Transformer) # . W . D W- W-
Stage 3 1616 16 ¢ 45 MSA MS
T L)
Patch Merging || A A N . Transformer Blocks Linear Linear
Transformer |32 TR 8E l : Norm Norm
Stage 4 > Ra | \/2i—1 \Ju_ A
=! aU~d U : LAY D ——

16 16

[ Key Takeaway: Large Model + Large-Scale data = Good Representations ]
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Qualitative Masked Reconstruction Results

a) Qualitative Masked Reconstructions b) Masking Strategy Ablation

Grid Block Random

Input Masked Reconstructed

Reconstructed Masked Reconstructed Masked
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x Downstream 3D OBB Prediction
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Quantitative Results

NeRF-MAE Scaling Laws NeRF Quality on Pretraining
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Results Analysis

a) Pretraining Data (Rendered vs GT. Depth) b) NeRF-MAE model on FRONT3D OBB
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Qualitative Results

Input NeRF DIERAGLAK (Lhars) NeRF-RPN  NeRF-MAE (Ours)  Ground Truth Zoomed-in

B Wall [ Cabmet [ Window
I Bed B Table [ Door I Accessory
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Summary so far

Good:

1) Early signs of life of 3D foundation models only utilizing posed 2D data
2) Scaling helps here too

Bad:

1) No neural rendering + masking communication which could be important
for geometric downstream tasks

2) Single modality currently. Language/Audio as input?
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Current/Future Work

3D Vision and Robotics Foundation Models

- Trained on massive datasets on large compute
- Depth/poses/calibration is the key factors
- Most likely use an LLM due to the world knowledge it has obtained

Benchmarking Robotics Foundation Models

- Need a common evaluation to validate the performance
- Robo-QA or spatial understanding could be early signs of success

Data Augmentation through NVS and Diffusion Models

- We have other foundation models like ZeroNVS or Diffusion Models,
so why not utilize them off-the-shelf for data augmentation?

Distilling 2D Foundation Models to 3D

- Distill powerful 2D models trained on billions of internet scale datapoints
- Some examples: semantic distillation into NeRFs

RoboPaint, arXiv 2024 | OpenEQA, CVPR2024 | ZeroNVS, CVPR 2024 | Feature3DGS, CVPR 2024



76

Thank you!

Zubair Irshad

Research Scientist
Toyota Research Institute

09/8/2024
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