Towards Embodied 3D Foundation Models

Zubair Irshad

Research Scientist Toyota Research Institute

09/8/2024

zubairirshad.com

- Currently based in Silicon Valley, CA working as a Research Scientist at TRI
- PhD in ME from Georgia Tech
- Training AI and deep models since 6+ years
- Fulbright Scholar
- Various industry experiences
- Publications/Patents/Open-Source Contributions

Agenda

- Recent 3D Representations 10 mins
- What are foundation models? 5 mins
- How to build towards 3D foundation models-25 mins
- Wrap up / Q&A 10-15 mins

Part 1: Recent 3D Representations

What are Neural Fields or NeRFs?

Approach to transform 2D pictures into 3D Scenes

Tancick et al, BlockNeRF, CVPR 2022

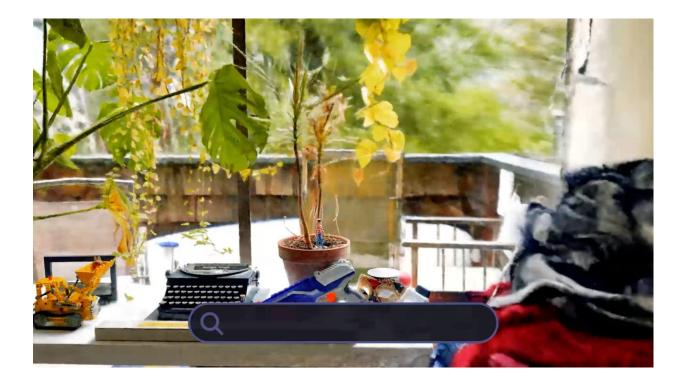
Applications

Scene Understanding for Outdoor Scenes

Irshad et al, NeO 360, ICCV 2023

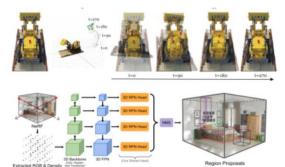
Visual Effects

Language guided 3D Querying

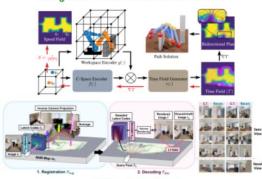


J. Kerr et al. LeRF, ICCV 2023

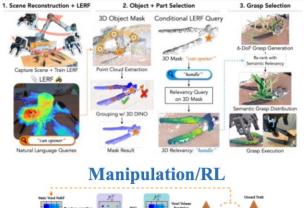
Robotics

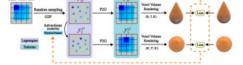


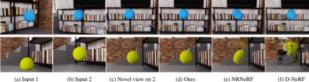
Object Pose Estimation



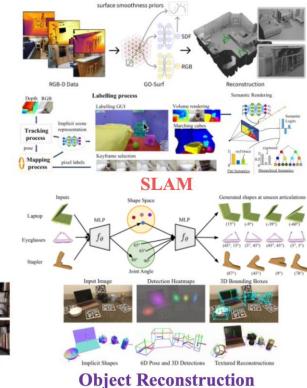
Navigation



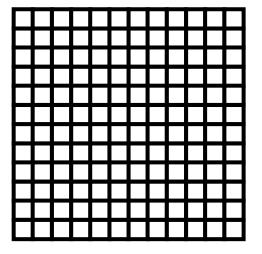


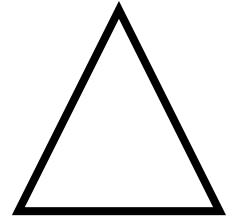


Physics



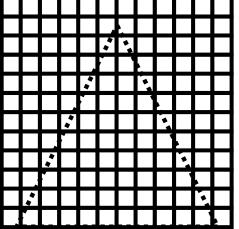
Let's go back to 2010 on how we were understanding 3D back then



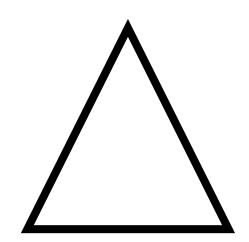


Initialized Grid

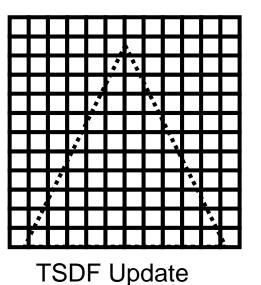
Target Geometry

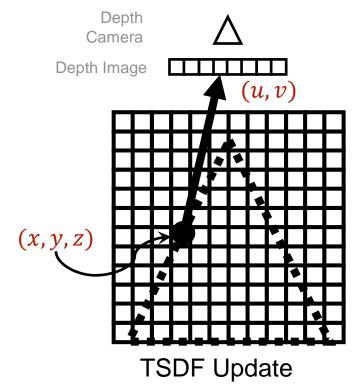


Initialized Grid



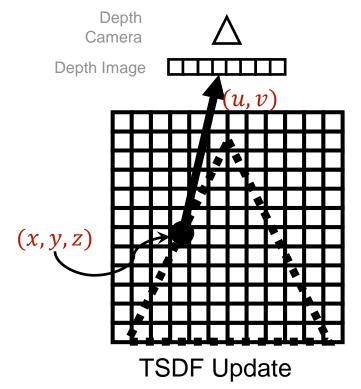
Target Geometry





- For each 3D voxel location in the *camera coordinate* (*x*, *y*, *z*):
 - 0 0 0

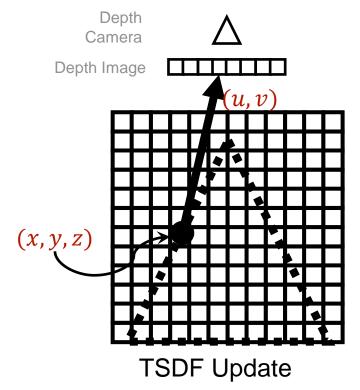
Ο



- For each 3D voxel location (x, y, z) in the camera coordinate:
 - Project (x, y, z) to 2D pixel (u, v).
 - Ο Ο

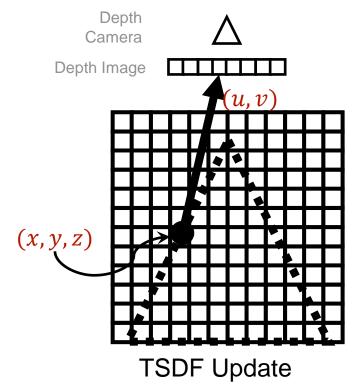
Slide modified from Mathew Tancik's talk

Ο



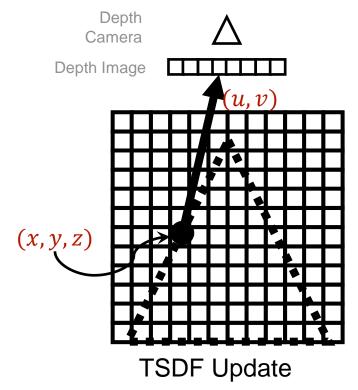
- For each 3D voxel location (*x*, *y*, *z*) in the camera coordinate:
 - Project (x, y, z) to 2D pixel (u, v).
 - Read the depth value d(u, v) at pixel (u, v).
 - 0

0

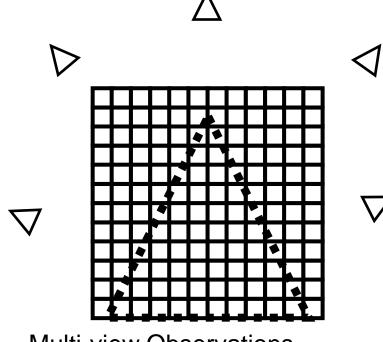


- For each 3D voxel location (*x*, *y*, *z*) in the camera coordinate:
 - Project (x, y, z) to 2D pixel (u, v).
 - Read the depth value d(u, v) at pixel (u, v).
 - Compute $d_{proj} = d(u, v) z$.

0

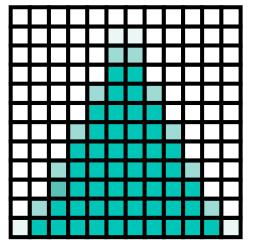


- For each 3D voxel location (*x*, *y*, *z*) in the *camera coordinate*:
 - Project (x, y, z) to 2D pixel (u, v).
 - Read the depth value d(u, v) at pixel (u, v).
 - Compute $d_{proj} = d(u, v) z$.
 - Normalize, truncate, and update the value stored in the voxel if $|d_{proj}|$ is smaller.

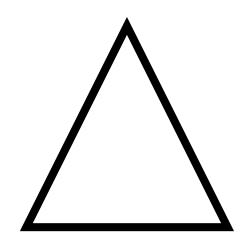


Multi-view Observations

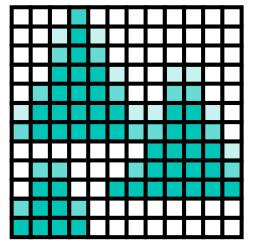
- For each 3D voxel location (*x*, *y*, *z*) in the camera coordinate:
 - Project (x, y, z) to 2D pixel (u, v).
 - Read the depth value d(u, v) at pixel (u, v).
 - Compute $d_{proj} = d(u, v) z$.
 - Normalize, truncate, and update the value stored in the voxel.



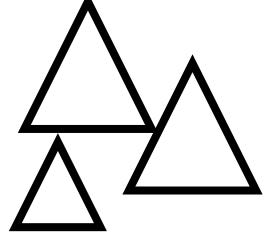
Reconstruction



Target Geometry



Reconstruction



Target Geometry

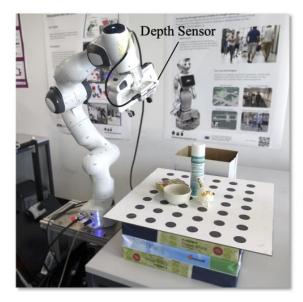
For each grasp, we integrate a TSDF of the scene along a fixed trajectory,

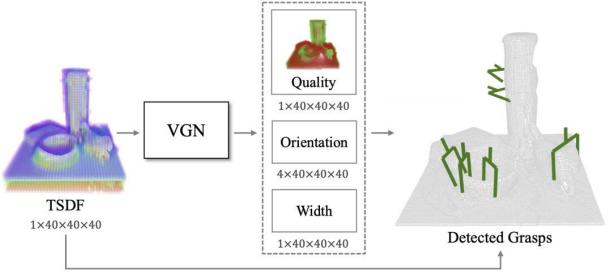
TSDF for Robotics Grasping

For each grasp, we integrate a TSDF of the scene along a fixed trajectory,

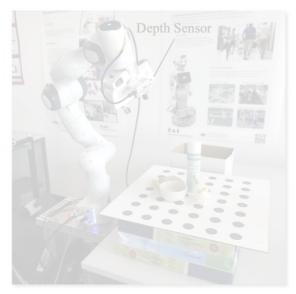
VGN, Breyer et al.

TSDF for Robotics Grasping

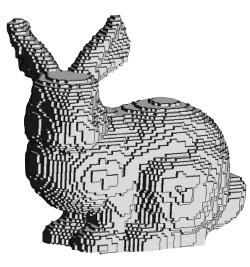




TSDF for Robotics Grasping



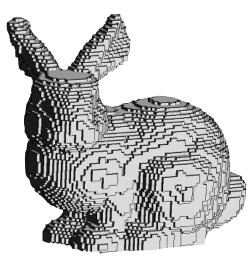
Search for a better 3D Representation



Voxel

Easy to optimize Large memory footprint

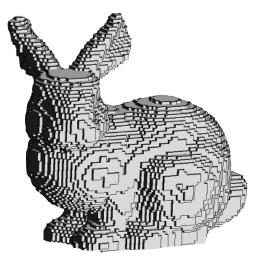
Is there a better Solution?



Voxel

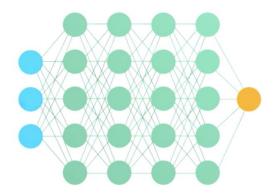
Easy to optimize Large memory footprint Easy to optimize Small memory footprint

Implicit Representation



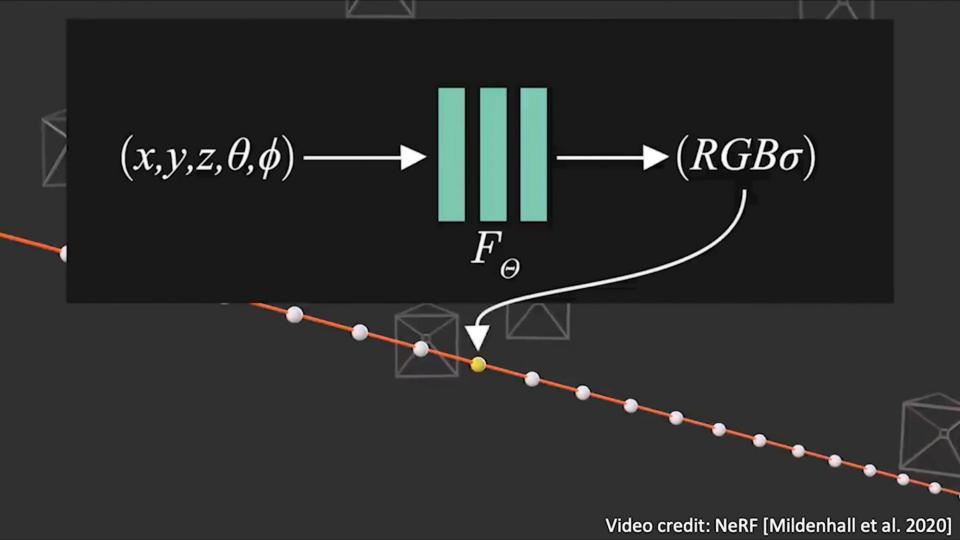
Voxel

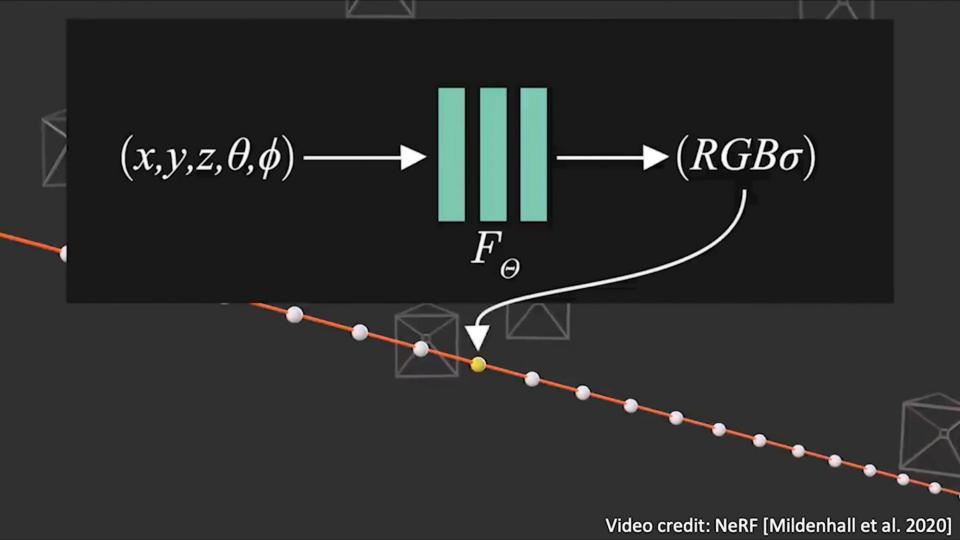
Easy to optimize Large memory footprint



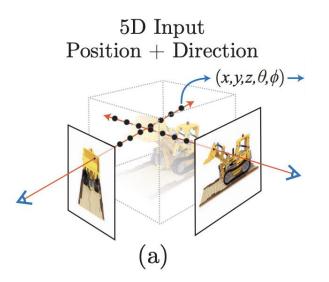
Multi Layer Perceptron

Easy to optimize Small memory footprint

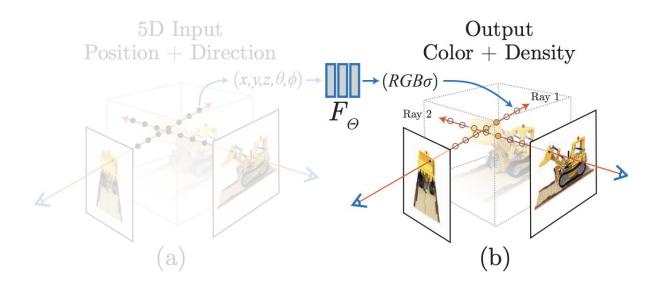




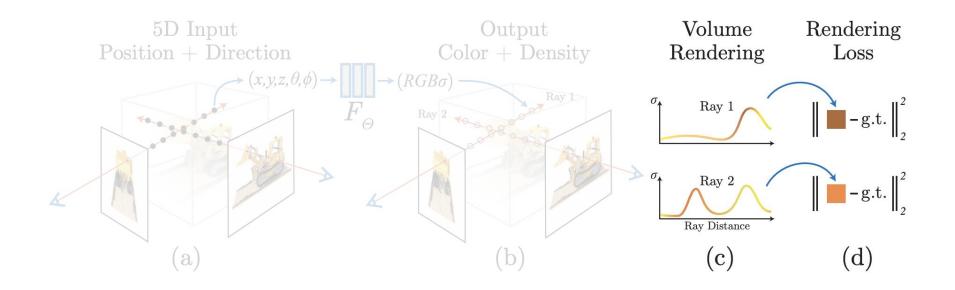
Neural Radiance Fields (NeRFs)



Neural Radiance Fields (NeRFs)



Neural Radiance Fields (NeRFs)



NeRF for Grasping

1. Scan Scene

2. Train NeRF and Distill Features

Distilled Feature Fields, Shen et al.

Summary so far

1) Because voxel grids are memory inefficient, we can use coordinatebased MLPs to store data efficiently

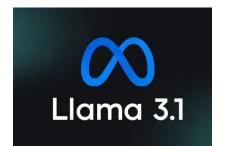
2) NeRF's volumetric rendering enables photorealistic rendering

3) Downstream applications include robotics, semantic grounding etc.

Part 2: Foundation Models

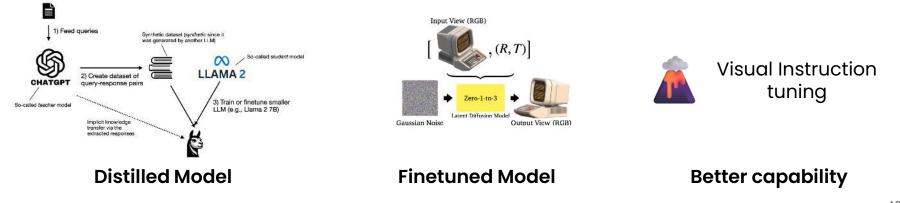
Large Models trained on massive datasets

Foundation Model



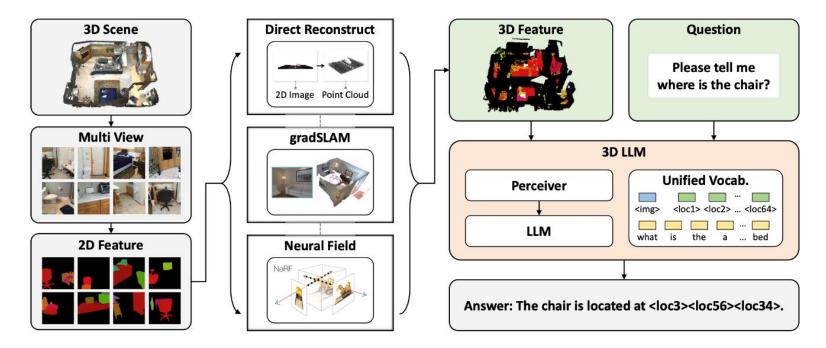
8x 222B parameters

8B parameters



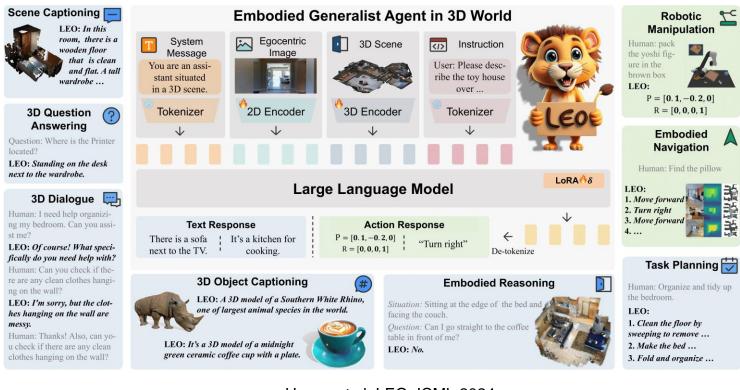
Phi-2 Microsoft, Zero123 Liu et al, Llava Lu et al.

3D LLM



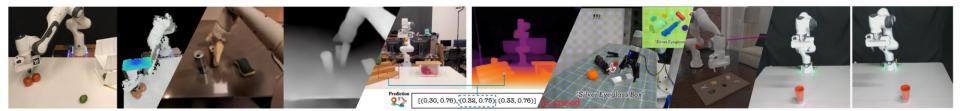
Yining et al.3D LLM, Neurips 2023

Embodied Foundation Model



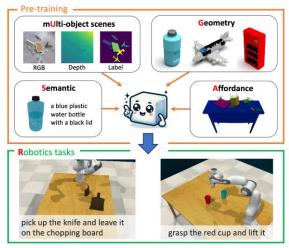
Huang et al. LEO, ICML 2024

What about 3D + Robotics?



Policy Learning

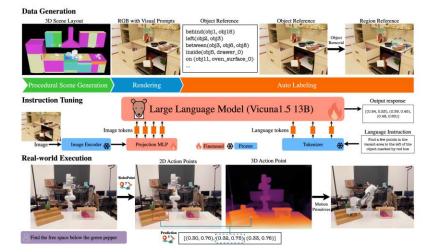
VLMs and VLA



Representations

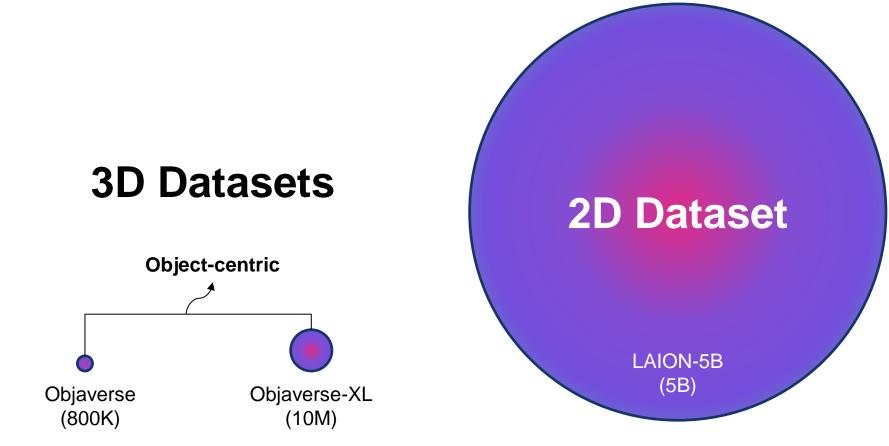
Simulation/Benchmarks

Pretraining



SUGAR CVPR 2024, RoboPoint arXiv 2024

Why Neural Fields Matter for 3D Foundation Models



Summary so far

1) Foundation models are essential due to various reasons i.e. saving resources

2) 3D vision is starting to see some decent foundation models

3) Foundation models can be pulled into smaller more meaningful models through finetuning or model distillation

Part 3: How to build towards 3D Foundation Models

ShAPO: Implicit Representations for Shape Appearance and Pose Optimization

Zubair Irshad

Sergey Zakharov

Rares Ambrus

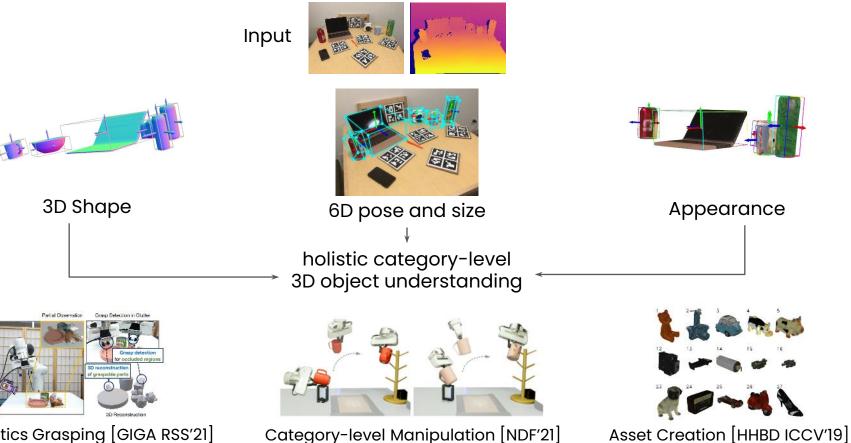
Thomas Kollar

Zsolt Kira

Adrien Gaidon

European Conference in Computer Vision 2022

Motivation



48 Robotics Grasping [GIGA RSS'21]

Category-level Manipulation [NDF'21]

Object Reconstruction and Pose Estimation (Current Paradigm)

Key highlights (Prior Methods):

- Anchor-Based

۷

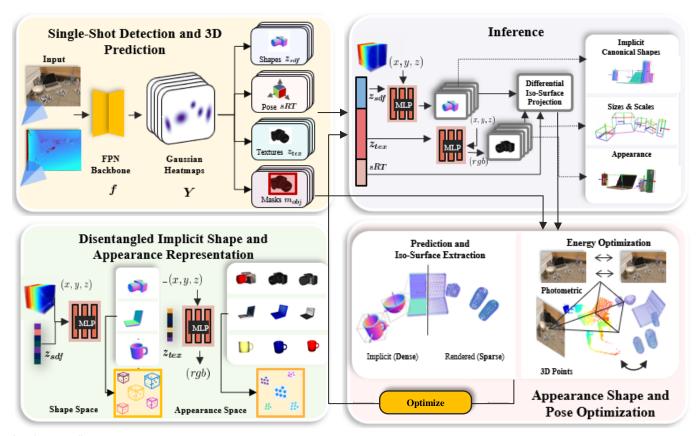
- Disjoint shape reconstruction and objectcentric scene context
- Slow reconstruction
- Category-specific reconstruction and 6D pose and size estimation

Key highlights (Our proposed):

- + Anchor-free 3D Contribution 1
- + Joint shape reconstruction and objectcentric scene context
- + Fast (Real-time) reconstruction Contribution 2
- + Category agnostic reconstruction and 6D pose and size estimation Contribution 3

0.05_{FPS}

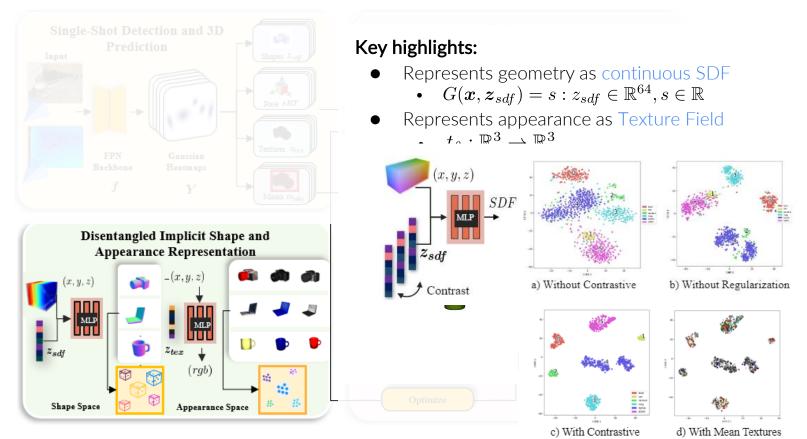
Architecture



[Ref] M.Z.Irshad, et al, "ShAPO : Implicit Representations for Multi Object Shape Appearance and Pose Optimization, ECCV2022

50

Shape and Appearance Prior Database



[Ref] M.Z.Irshad, et al, " ShAPO : Implicit Representations for Multi Object Shape Appearance and Pose Optimization, ECCV2022

51

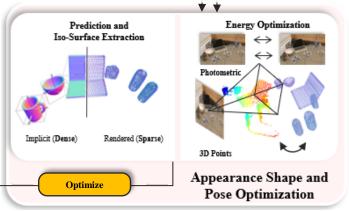
Efficiently optimizing Shape and Texture

Differentiable iso-surface projection:

- Trivial Solution: Threshold the points based on SDF value, Non-Differentiable
- Alternate solution: Utilize gradients and normal values (Ours)

$$n_i = \frac{\partial G(x_i; \mathbf{z}_{sdf})}{\partial x_i}$$

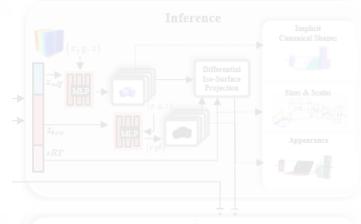
$$p_i = x_i - \frac{\partial G(x_i; \mathbf{z}_{sdf})}{\partial x_i} G(x_i; \mathbf{z}_{sdf})$$

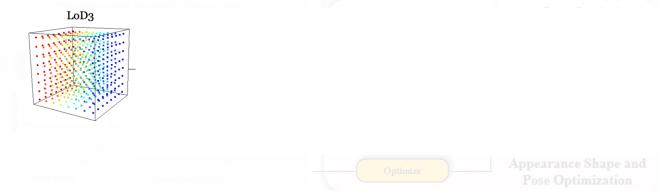


Efficiently optimizing Shape and Texture

Octree-based point sampling:

- Brute Force Solution: Extremely inefficient
- Sampling 216000 ~= 1600 surface points (0.7%)
- Solution: Coarse-to-fine sampling
- LoD3 to LoD7

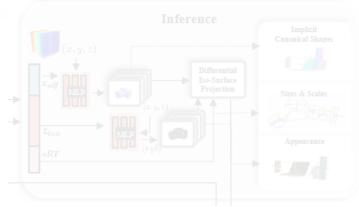


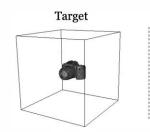


Efficiently optimizing Shape and Texture

Octree-based point sampling:

- Brute Force Solution: Extremely inefficient
- 603 points = 216000 ~= 1600 surface points (0.7%)
- Solution: Coarse-to-fine sampling
- LoD3 to LoD7





Quantitative Results

Takeaway: Establish a new **SOTA** for 6D Pose and Size Estimation, while **adding textures** to the representation!

Metrics: **Detection** (Intersection over Union, IOU@2525, IOU@50) **Pose Estimation** (Rotation, translation accuracy) Table 2: Quantitative comparison of 6D pose estimation and 3D object detection on NOCS [41]: Comparison with strong baselines. Best results are highlighted in **bold**. * denotes the method does not report IOU metrics since size and scale is not evaluated. We report metrics using nocs-level class predictions for a fair comparison with all baselines.

	CAMERA25							REAL275					
Method	IOU25	IOU50	5° 5 cm	5° 10 cm	10° 5 cm	10° 10 cm	IOU25	IOU50	5° 5 cm	5° 10 cm	10° 5 cm	10° 10 cm	
1 NOCS [41]	91.1	83.9	40.9	38.6	64.6	65.1	84.8	78.0	10.0	9.8	25.2	25.8	
2 Synthesis [*] [3]	-	-	-	-	-	-	-	-	0.9	1.4	2.4	5.5	
3 Metric Scale [23]	93.8	90.7	20.2	28.2	55.4	58.9	81.6	68.1	5.3	5.5	24.7	26.5	
4 ShapePrior [37]	81.6	72.4	59.0	59.6	81.0	81.3	81.2	77.3	21.4	21.4	54.1	54.1	
5 CASS [2]	-	-	-	-	-	-	84.2	77.7	23.5	23.8	58.0	58.3	
6 CenterSnap [15]	93.2	92.3	63.0	69.5	79.5	87.9	83.5	80.2	27.2	29.2	58.8	64.4	
7 CenterSnap-R [15]	93.2	92.5	66.2	71.7	81.3	87.9	83.5	80.2	29.1	31.6	64.3	70.9	
8 ShAPO (Ours)	94.5	93.5	66.6	75.9	81.9	89.2	85.3	79.0	48.8	57.0	66.8	78.0	

Table 3: Quantitative comparison of 3D shape reconstruction on NOCS [41]: Evaluated with CD metric (10^{-2}) . Lower is better.

	CAMERA25					REAL275								
Method	Bottle	Bowl	Camera	\mathbf{Can}	Laptop	Mug	Mean	Bottle	Bowl	Camera	\mathbf{Can}	Laptop	Mug	Mean
1 Reconstruction [37]	0.18	0.16	0.40	0.097	0.20	0.14	0.20	0.34	0.12	0.89	0.15	0.29	0.10	0.32
2 ShapePrior [37]	0.34	0.22	0.90	0.22	0.33	0.21	0.37	0.50	0.12	0.99	0.24	0.71	0.097	0.44
3 CenterSnap	0.11	0.10	0.29	0.13	0.07	0.12	0.14	0.13	0.10	0.43	0.09	0.07	0.06	0.15
3 ShAPO (Ours)	0.14	0.08	0.2	0.14	0.07	0.11	0.16	0.1	0.08	0.4	0.07	0.08	0.06	0.13

Ablation Analysis

Takeaways:

- 1. LoD7 has the higher accuracy while LoD6 gives the best speed/accuracy trade-off
- 2. PSNR improves after optimization and finetuning confirming iterative optimization helps fine-tuning

Table 4: Generalizable Implicit Representation Ablation: We evaluate the efficiency (point sampling/time(s)/memory(MB)) and generalization (shape(CD) and texture(PSNR) reconstruction) capabilities of our implicit object representation as well as its sampling efficiency for different levels of detail (LoDs) and compare it to the ordinary grid sampling. All ablations were executed on NVIDIA RTX A6000 GPU.

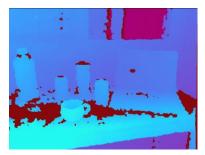
			Point Sampling		Efficience	y (per object)	Reconstruction			
(Grid type	Resolution	Input	Output	Time (s)	Memory (MB)	Shape (CD)	Texture (PSNR)		
		40	64000	412	10.96	3994	0.30	10.08		
(Ordinary	50	125000	835	18.78	5570	0.19	12.83		
		60	216000	1400	30.51	7850	0.33	19.52		
		LoD5	1521	704	5.53	2376	0.19	9.27		
	OctGrid	LoD6	5192	3228	6.88	2880	0.18	13.63		
		LoD7	20246	13023	12.29	5848	0.24	16.14		

Table 1: Texture quality ablation. We compare texture quality using the PSNR metric between three modalities: network prediction, optimization, and fine-tuning of the t_{θ} network.

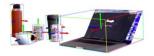
	Inference	Optimization	Fine-tuning
PSNR	11.41	20.64	24.32

Qualitative Results (In-the-wild on HSR Robot)

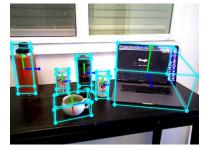
RGB



Depth



Appearance Reconstruction

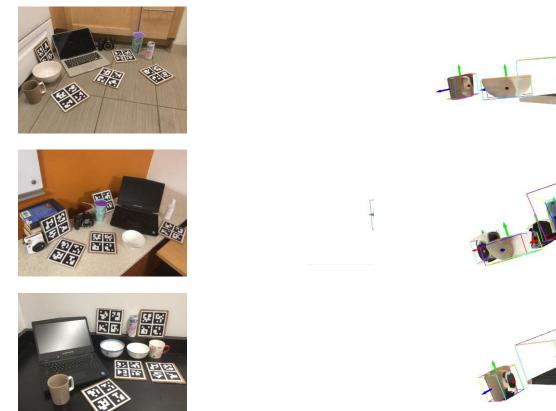


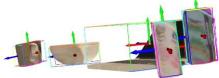
6D pose and size

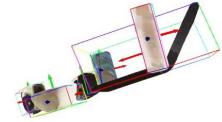
3D Shape

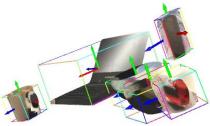
Testing Results on Xtion Pro Live Camera on HSR Robot

Qualitative Results









U3C $\mathbf{v}\mathbf{v}$

NOCS REAL275

Input

Summary so far

1) Categorical 3D models can model a large number of categories of objects

2) Combining them with detection makes them efficient retrievers

3) Scaling to thousands of categories is still a slight challenge

Nerf-MAE

Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields

European Conference on Computer Vision, ECCV 2024 also appeared at CVPR Neural Rendering Intelligence Workshop, 2024

Zubair Irshad

Sergey Zakharov

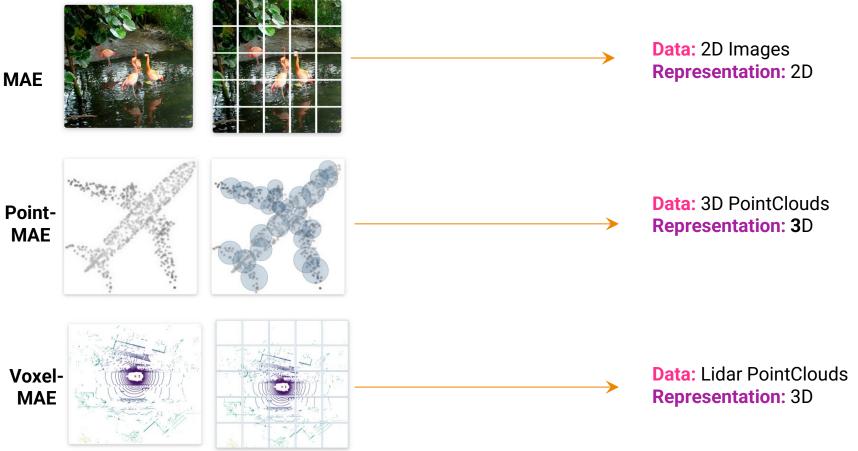
Vitor Guizilini

Adrien Gaidon

Zsolt Kira

Rares Ambrus

What is representation Learning?



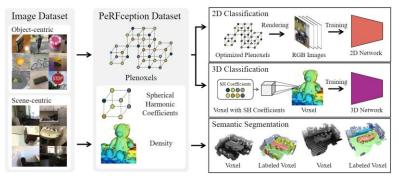
Neural Fields beyond showcasing high rendering quality

Language-Embedded Radiance Fields (LeRF, Kerr et al)

1. Scan Scene

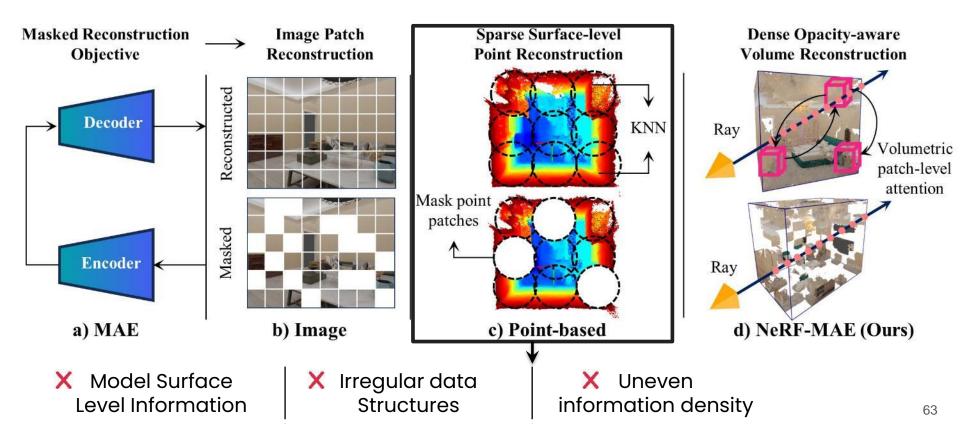
Open-world Manipulation (F3RM, Shen et al)

Inferring Accurate Geometry (NeRFMeshing, Rakotosaona et al)

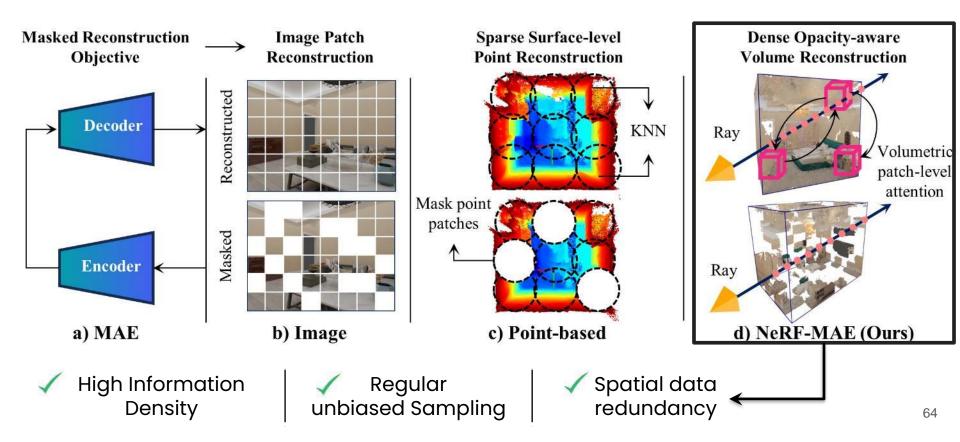


Efficient Data Storage (PerFception, Jeong et al)

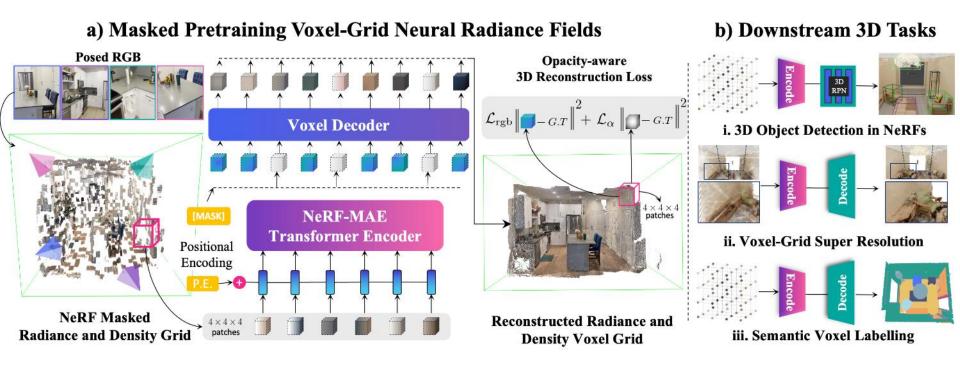
Existing 3D MAE architectures vs NeRF-MAE



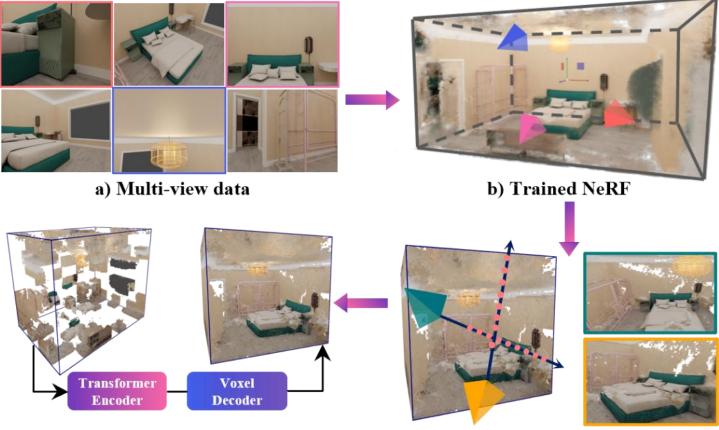
Existing 3D MAE architectures vs NeRF-MAE



Architecture



Data preprocessing flow for large-scale 3D pretraining

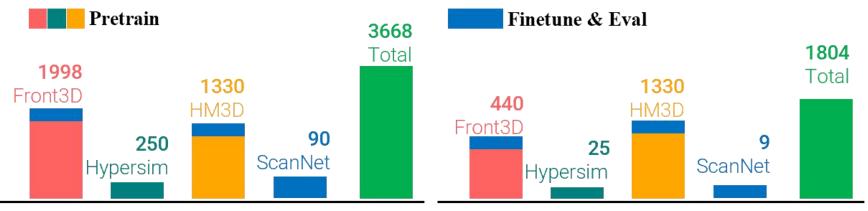


d) NeRF-MAE Pretraining

c) Extracted Radiance and Density Grid

a) Multi-view Dataset Setup

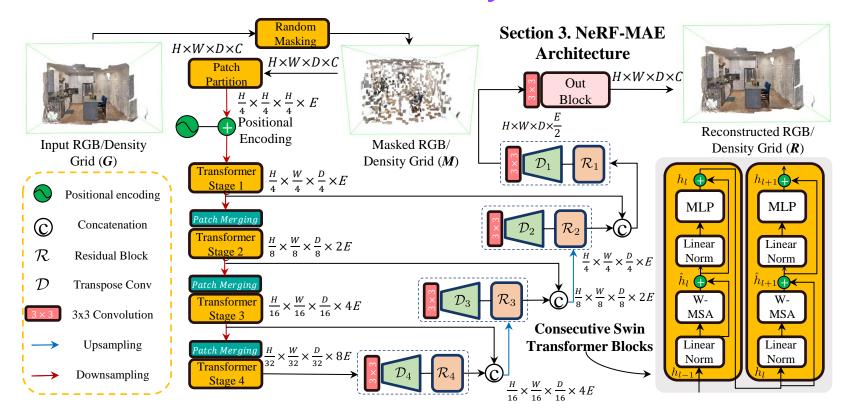
b) NeRF-MAE Data Mix & Statistics



Number of Scenes

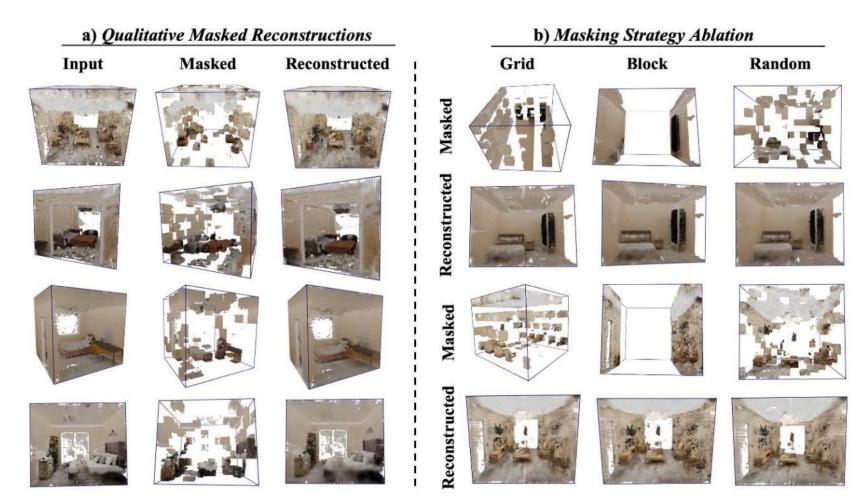
Number of Images (x1000)

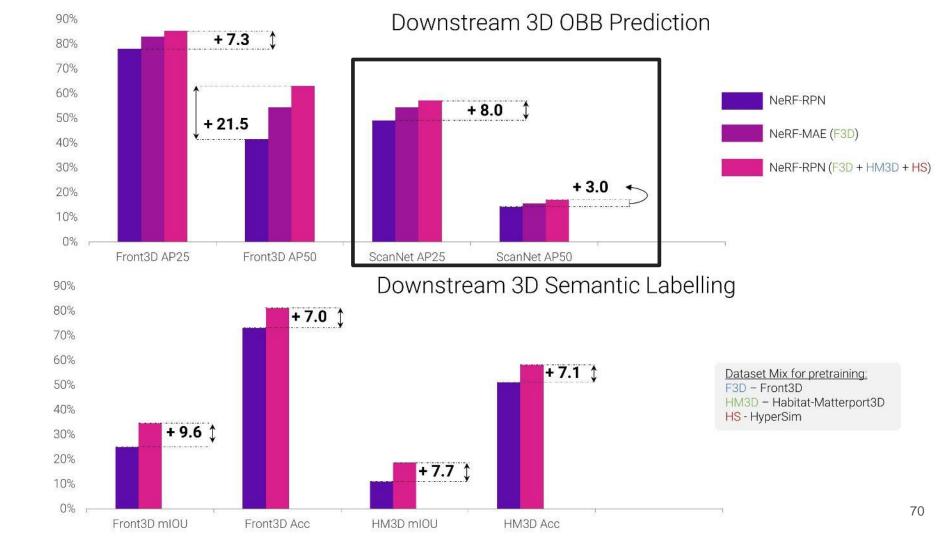
Key Idea: Pretrain a Single Transformer model using masked reconstruction objective



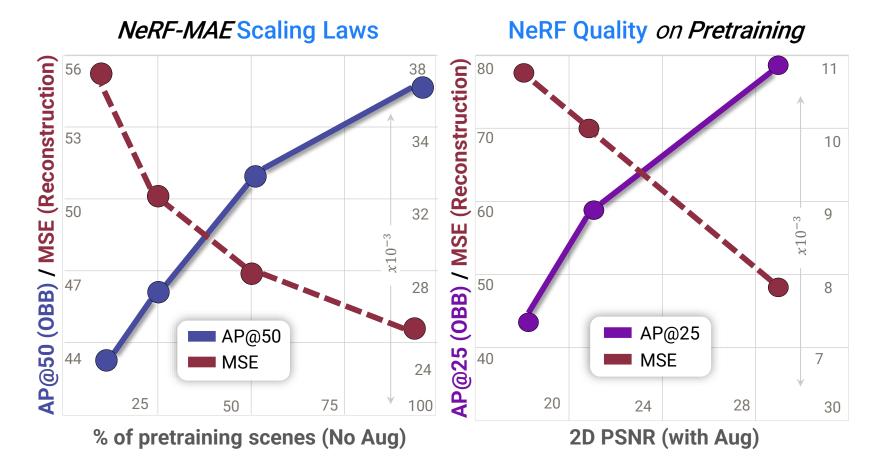
Key Takeaway: Large Model + Large-Scale data = Good Representations

Qualitative Masked Reconstruction Results

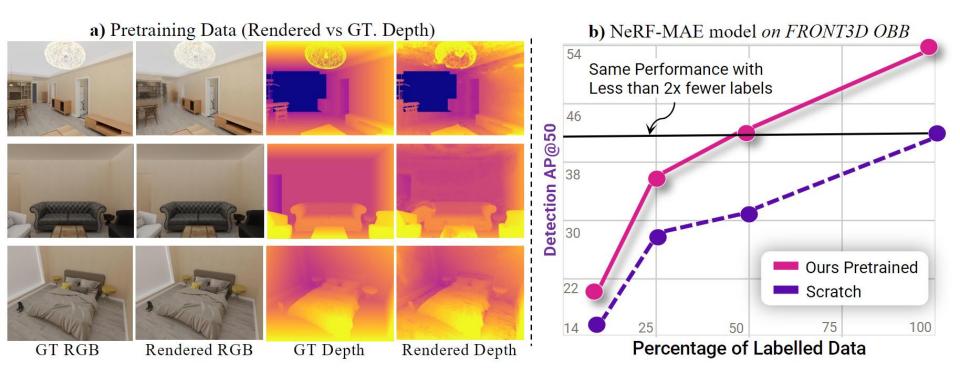




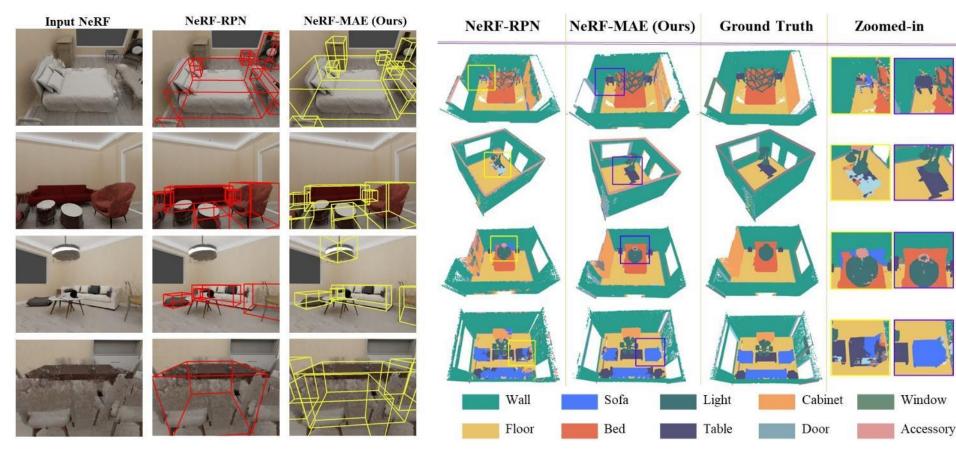
Quantitative Results



Results Analysis



Qualitative Results



Summary so far

Good:

1) Early signs of life of 3D foundation models only utilizing posed 2D data

2) Scaling helps here too

Bad:

1) No neural rendering + masking communication which could be important for geometric downstream tasks

2) Single modality currently. Language/Audio as input?

Current/Future Work

3D Vision and Robotics Foundation Models

- Trained on massive datasets on large compute
- Depth/poses/calibration is the key factors
- Most likely use an LLM due to the world knowledge it has obtained

Benchmarking Robotics Foundation Models

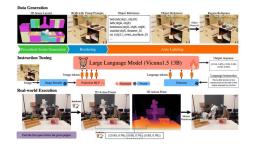
- Need a common evaluation to validate the performance
- Robo-QA or spatial understanding could be early signs of success

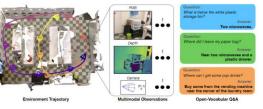
Data Augmentation through NVS and Diffusion Models

- We have other foundation models like ZeroNVS or Diffusion Models, so why not utilize them off-the-shelf for data augmentation?

Distilling 2D Foundation Models to 3D

- Distill powerful 2D models trained on billions of internet scale datapoints
- Some examples: semantic distillation into NeRFs





Thank you!

Zubair Irshad

Research Scientist Toyota Research Institute

09/8/2024

zubairirshad.com